é} usenix
4 THE ADVANCED

COMPUTING SYSTEMS
ASSOCIATION

Ground Truth for Binary Disassembly is Not Easy

Chengbin Pang and Tiantai Zhang, Nanjing University; Ruotong Yu,
University of Utah; Bing Mao, Nanjing University; Jun Xu, University of Utah

https://www.usenix.org/conference/usenixsecurity22/presentation/pang-chengbin

This paper is included in the Proceedings of the
31st USENIX Security Symposium.
August 10-12, 2022 « Boston, MA, USA
978-1-939133-31-1

Open access to the Proceedings of the
31st USENIX Security Symposium is
sponsored by USENIX.

I
+ » e - = =
. JEEEES o -
R W E »

Ground Truth for Binary Disassembly is Not Easy

Chengbin Pang® Tiantai Zhang®

Ruotong Yu*

Bing Mao® Jun Xu*

State Key Laboratory for Novel Software Technology, Nanjing University
£School of Computing, University of Utah

Abstract

Modern disassembly tools often rely on empirical evaluations
to validate their performance and discover their limitations,
thus promoting long-term evolvement. To support the empiri-
cal evaluation, a foundation is the right approach to collect the
ground truth knowledge. However, there has been no unani-
mous agreement on the approach we should use. Most users
pick an approach based on their experience or will, regardless
of the properties that the approach presents.

In this paper, we perform a study on the approaches to
building the ground truth for binary disassembly, aiming to
shed light on the right way for the future. We first provide
a taxonomy of the approaches used by past research, which
unveils five major mechanisms behind those approaches. Fol-
lowing the taxonomy, we summarize the properties of the
five mechanisms from two perspectives: (i) the coverage and
precision of the ground truth produced by the mechanisms
and (ii) the applicable scope of the mechanisms (e.g., what
disassembly tasks and what types of binaries are supported).
The summarization, accompanied by quantitative evaluations,
illustrates that many mechanisms are ill-suited to support the
generation of disassembly ground truth. The mechanism best
serving today’s need is to trace the compiling process of the
target binaries to collect the ground truth information.

Observing that the existing tool to trace the compiling
process can still miss ground truth results and can only handle
x86/x64 binaries, we extend the tool to avoid overlooking
those results and support ARM32/A Arch64/MIPS32/MIPS64
binaries. We envision that our extension will make the tool a
better foundation to enable universal, standard ground truth
for binary disassembly.

1 Introduction

Disassembly is the process of reversing basic constructs,
such as instructions and functions, from binary code. It
offers the foundation for binary analysis and the down-
stream security applications (e.g., code layout randomization
[12,15], control flow integrity [31,37], and similarity measure-
ment [11,16,36]). To support disassembly, an abundance of
tools have been created, ranging from open source ones (e.g.,
ANGR [33] and GHIDRA [3]) to commercial ones (e.g., IDA
PRO [13] and BINARY NINIJA [25]). To the success of these
tools, a critical but easily overlooked factor is the generation
of accurate ground truth of disassembly results. On the one
hand, ground truth knowledge is a foundation to build many
tools. In particular, data-mining or machine learning based

tools [10,28,32,35] need ground truth to label data for train-
ing the models. On the other hand, ground truth information
is indispensable to measure the disassembly outcomes, which
drives the evolvement of nearly every tool.

Despite the importance of ground truth for disassembly, it
has not received due attention. Past research on binary disas-
sembly has been creating/obtaining ground truth somewhat
arbitrarily, without sufficient consideration of the rigor. Take
the recovery of instructions as an example. As far as we know,
there are four distinct strategies to obtain the ground truth.
Meng et al. [22] run manual analysis to obtain the ground
truth, while ZAFL [23] simply considers the results produced
by existing disassemblers (OBJDUMP) as the ground truth (or
precisely, baseline) for comparison. In contrast, XDA [28] and
Andriesse et al. [5] combine instruction locations embedded
in the debug information and linear sweeping to collect legiti-
mate instructions. More intelligently, Pang ef al. [26] trace
the compiling, assembling, and linking process to gather all
the instructions emitted by the compilation toolchain. How-
ever, little has been done to inspect the fidelity of various
types of ground truth and the implications behind. Instead,
the community seems to have been permissive towards the
choice of ground truth and accept whatever being used.

In this paper, we focus on the above concern about ground
truth for binary disassembly. We start with a taxonomy of the
approaches to building ground truth information for major dis-
assembly tasks (recovery of instructions, function boundaries,
and control flows). The taxonomy describes the internal princi-
ples and mechanisms of each approach. Overall, five different
mechanisms are being used nowadays. These mechanisms are
heterogeneous in nature, ranging from labor-intensive ones
(® manual analysis) to opportunistic ones (@ reusing exist-
ing disassemblers) and compiler-aided ones (® leveraging
compilation metadata, ® exploiting intermediate compiler
outputs, and ® tracing the compiling process).

Following the taxonomy, we run a qualitative analysis to
compare the five mechanisms from two key perspectives that
affect their applications, including (i) the recall and precision
of the ground truth produced by the mechanisms and (ii) the
applicable scope of the mechanisms (e.g., what disassembly
tasks and what types of binaries are supported). It turns out
that many of the mechanisms are somewhat ill-suited to sup-
port the generation of ground truth. Most notably, they lack
the necessary foundations to ensure coverage and correct-
ness, which tend to present inadequate recall and precision.
Throughout further, quantitative evaluations, we validate that
the lack of recall and precision can very often lead to incom-
plete observations and unreliable conclusions. For instance,

USENIX Association

31st USENIX Security Symposium 2479

Meng et al. [22] rely on manual analysis to collect a small
set of ground truth results for evaluating their DYNINST tool,
which demonstrates full accuracy of DYNINST in handling
complex constructs. However, extending the ground truth to
include all the results, we observe that DYNINST may not
offer perfect accuracy.

While our study and evaluation unveil the inappropriate-
ness of many existing approach, we, fortunately, identify that
the mechanism of tracing the compiling process can largely
meet the requirement of providing ground truth for binary
disassembly. The mechanism essentially reports the infor-
mation that the compiler considers as the ground truth when
compiling the target binaries. In result, this mechanism of-
fers guaranteed precision and supports all kinds of disas-
sembly tasks. However, only one tool, developed by Pang
et al. [26], supports tracing the compiling process to collect
disassembly ground truth. And the tool has two major issues
to serve today’s needs: it still misses a set of ground truth
that the compiler cannot recognize and it can only handle
x86/x64 binaries. Motivated by the potential of the tool, we
extend it to re-collect the missing ground truth and to support
ARM32/A Arch64/MIPS32/MIPS64 binaries. Applying the
extended tool to re-evaluate mainstream disassembly tools,
we derive a group of previously less-known findings. For
instance, commercial tools, such as IDA PRO and BINARY
NINJA, present substantially downgraded performance when
disassembling MIPS binaries. We anticipate that our exten-
sion will make the tool a better foundation to enable universal,
standard ground truth for binary disassembly.

In summary, we make the following main contributions.

* We present a systematic taxonomy of the approaches and
mechanisms to collect ground truth for binary disassembly.
The taxonomy brings a better view of what are being used
and accepted today.

* We perform a qualitative analysis to unveil the limitations
of existing approaches for disassembly ground truth. We
further conduct a quantitative evaluation to demonstrate the
implications and harms those limitations can bring to the
applications. The analysis and evaluation provide evidence
for the need of better, trustworthy approaches.

* We extend the state-of-the-art tool to enable complete, pre-
cise, and widely applicable collection of ground truth for
binary disassembly. This piece of extension helps pave the
way to standardize and unify the ground truth for binary
disassembly evaluation. The code and dataset are available
athttps://github.com/junxzml 990/x86-so0k.

2 Taxonomy of Ground Truth Approaches

There has been no agreement on the approach to creating the
ground truth for binary disassembly. Thus, various approaches
exist and are being used. To systematically understand those
approaches, we first categorize them based on their internal

mechanisms. In general, the approach for ground truth is

tied to the disassembly task. To better bound our research,

we focus on ground truth for three major disassembly tasks

(definitions are adapted from previous research [10, 22, 26,

27)).

* Instruction Recovery is the process of identifying instruc-
tions emitted by the compiler or introduced by the developer
in a binary program.

* Function Detection is to reconstruct the mapping from
the code in a binary to the corresponding functions in the
source code. In this paper, we focus on the detection of
function starts, considering that other function information
can be easily obtained by combining the function start and
the control flows [6].

* CFG Reconstruction re-builds the control flow graph
(CFG) of a binary program. This paper only discusses con-
trol flows in the form of indirect jumps. Other control flows
are either trivial to obtain (e.g., direct jumps/calls) or less
feasible to reconstruct (e.g., indirect calls), and modern dis-
assemblers do not particularly handle them.

On the market, the existing approaches to obtaining ground
truth prevalently adopt five mechanisms. They take the target
binaries as inputs and output constructs required by the above
diassembly tasks as the ground truth. They also often assume
they have access to the compilation process of the target
binaries.

Running Manual Analysis. This is an intuitive but less pop-
ular approach. Meng et al. [22] used this approach when
evaluating their DYNINST tool. They manually collected the
ground truth for a small set of instructions, functions, and con-
trol flows. In particular, they focused on challenging code con-
structs, such as non-instruction bytes in code, non-contiguous
functions, and jump tables.

Reusing Existing Disassemblers. From time to time, people
consider existing, reputed disassemblers as the oracle and use
their outputs as the baseline for comparison. Nagy et al. [23]
run LLVM-OBJDUMP on target binaries to get the baseline
of instructions, when measuring the coverage of their ZAFL
tool. In contrast, Kinder ef al. [18] take jump tables detected
by IDA PRO as the baseline to evaluate their JAKSTAB tool
in reconstructing control flows.

Exploiting Intermediate Compiler Outputs. Modern com-
pilers can be configured to output certain intermediate results,
which have been exploited by recent research [21,34] to derive
disassembly ground truth.

offsets raw bytes instructions

1

2 0000: F30F1EFA endbr64

3 0004: 55 push Y%rbp

4 0005: 4889E5 mov hrsp, hrbp

5 0008: 488D3D00 lea .LCO(%rip), %rdi

Listing 1: A snippet of listing files by GAS Assembler.

2480 31st USENIX Security Symposium

USENIX Association

https://github.com/junxzm1990/x86-sok

Li etal. [21] leverage the listing files produced by as-
semblers to obtain the ground truth of instructions. Listing 1
presents an example of listing files produced by GNU Assem-
bler when given the option of ~1isting-rhs-width=1024.
A listing file is tied to an object file, which gives offsets of
all instructions in each function belonging to the object file.
Adding the offset to the start address of a function recorded
by its symbol in the linked binary, one can calculate the final
address of each instruction in the function.

;3 Function main (main, funcdef_no=9, decl_uid=2839)

1

2 ...

3 (jump_insn # (parallel [(set (pc) (reg:DI 0 ax [92]))

4 1)# {xtablejump_1} ; this is a jump table reference)

5 (jump_table_data # O O (addr_diff_vec:SI
(label_ref:DI #)

6 [; array of jump table entries
7 (label_ref:DI #)
8 (label_ref:DI #)
9 (label_ref:DI #)

10 (label_ref:DI #)
11 (label_ref:DI #)]

Listing 2: Example of RTL output by GCC. It shows that
the main function contains one jump table with five targets.

David et al. [34] configure GCC to dump the final in-
ternal representation (RTL) during compilation, using the
developer option ~fdump-final-insns. They then extract
“rough” ground truth about jump tables from the RTL file. As
shown in Listing 2, RTL unveils the number of jump tables
and the number of targets of each jump table in each function,
which is deemed as the ground truth in [34].

Leveraging Compilation Metadata. The compilation tools,
given the needed options, can maintain various metadata in
the produced binaries. Such metadata, including symbols and
debug information (-g), is often used to obtain disassembly
ground truth.

Using addresses embedded in symbols as the ground truth
of function starts is a de facto standard strategy [5,6, 10,28,
35]. This piece of ground truth has also been used for different
goals. Andriess et al. [5] and Nucleus [6] leverage symbols
to measure their disassemblers’ performance of function de-
tection. Byteweight [10], XDA [28], and DEEPDI [35] apply
symbols to train and test their machine learning models for
function detection.

ARM binaries can also carry a special type of symbols
called mapping symbols [8], which mark the beginning ad-
dress of a sequence of ARM code, Thumb code, or data. Jiang
et al. [17] exploit the mapping symbols to collect ground
truth of instructions. Their idea is to linearly disassemble the
instruction from the beginning of a ARM/Thumb code region
until the next mapping symbol. In fact, OBJDUMP works in a
similar way when such mapping symbols exist. In this regard,
Jiang et al. [17] is essentially “reusing” OBJDUMP to obtain
ground truth of instructions.

Unlike symbols, debug information is mostly used to pro-
duce the ground truth of instructions and jump tables. An-
driess et al. [5] and XDA [28] collect addresses of legitimate
instructions encoded in the line information and linear sweep
the regions between any two addresses to build ground truth of
instructions. For conservativeness, they stop the linear sweep-
ing when encountering a control flow instruction. Andriess
et al. [5] further leverage the line information to pinpoint
jump tables. Specifically, they map switch statements and
their cases in the source code to indirect jumps and their
targets in the binary, based on the line information.

MC Layer Gold Linker
IR Collect FUNC, BBL |

ASM Collect JUMP TBL
Collect References °] Binary
5| O Code | Fix | O Code
GA Q Dua [Q Daa
1
Collect FUNC, BBL |} g9 6r Q 6r

Collect JUMP TBL
Collect References

12

ooo

«pp P{ LLVM FrontEnd

.asm

LLVM

€ RTL Pass
.cpp | Q Label FUNC, BBL | .ASM P
O | .asm Q Label JUMP TBL

CC
ooo

! Ground Truth;

Figure 1: The tools Pang et al. [26] use to obtain ground truth
for binary analysis. The boxes with grey color indicate com-
ponents that are modified in LLVM, GCC, and Gold Linker.

Tracing Compiling Process. The last mechanism is proposed
by Pang et al. [26]. They trace the end-to-end compiling, as-
sembling, and linking procedure to collect various types of
ground truth. Their approach follows the idea of CCR [19].
As shown in Figure |, CCR extends the LLVM Machine Code
(MC) layer. While assembling a bitcode file or an assembly
file to an object file, the extended MC layer collects informa-
tion about basic blocks, functions, and jump tables, and keeps
the information in an extra section. To merge information
from multiple object files, CCR further instruments the GNU
gold linker to adjust the above items in the process of linking.

Pang et al. also port the idea of CCR to GNU GCC. By
instrumenting the RTL pass in GCC, they insert primitives
to label functions, basic block, and jump tables in the assem-
ble code. In the procedure of assembling, these primitives
facilitate the customized GNU Assember (GAS) to collect
information about the corresponding items. Similar to CCR,
they save the collected information as a new section in each
object file and reuse the CCR linker for merging the object
files.

3 Properties of Ground Truth Approaches

The diverse group of ground truth approaches offer a wide
range of choices, but there lacks a systematic comparison of
those approaches. In this section, we inspect the existing ap-
proaches from four perspectives that affect their applications.

¢ Precision describes the ratio of correct results in
the “ground truth” reported by an approach. Formally,
precision = % (TP and F P stand for true positives
and false positives). A low precision means the ground truth

includes many errors and should not be trusted.

USENIX Association

31st USENIX Security Symposium 2481

Table 1: Qualitative comparison of existing approaches to building ground truth for binary disassembly. The degree of filling in a
circle shows how well a mechanism satisfies a property. For instance, @ means full satisfaction and O indicates zero satisfaction.

. C . Properties
Mechanisms Applications Precision ‘ Recall ‘ Gel;erality ‘ Extendibility
Running Manual Analysis [22]) O O O
Reusing Existing Disassemblers [18,23] @) (@) (@) (@)
Exploiting Intermediate Compiler Outputs [21,34] (@) () O O
Leveraging Compilation Metadata [5,10,17] (@) (@) O (@)
Tracing compilation Process [26] (@) @) (@) O

* Recall measures the ratio of all correct results covered

by the reported ground truth. Formally, recall = \TP‘\Z%
(F'N stands for false negatives). Ground truth with limited
coverage may also not be trusted as it gives incomplete

information, which can be biased and misleading

Generality requires that ground truth approach supports
various disassembly tasks. The common ones include in-
struction recovery, function detection, and CFG reconstruc-
tion, as described in section 2.

Extendibility concerns the types of binaries that the ground
truth approach can be applied to. Two common metrics of
extendibility are what architectures are supported (e.g., x86,
ARM, and MIPS) and what compilers are supported (e.g.,
GCC, Clang, and MSVC).

Table | summarizes the above properties of the approaches
we categorized in section 2.

Running Manual Analysis. Assuming the analysts are expe-
rienced and cautious, this approach shall offer ground truth
with extremely high precision. In addition, the approach can
be generally applied to any disassembly tasks and binaries
produced by any compilers/running on any architectures. This
implies high generality and high extendibility.

;original code
vpmull.p64

1 1 ; replaced version
2 $X1,$H, $H 2 .word 0xf2a02eal
3 ... 3 ...

4 vpmull2.p64 $Xh,$H,$H 4 .word Oxf2a94ea9
5 vpmull.p64 $Xm,$t0,$t0 5 .word O0xf2a02eal

Listing 3: Code labeled as data in openss11.1.01, ARM
version. Before assembling, vpmull.p64/vpmull2.p64 in-
structions (/eft) are replaced by . word bytes (right) to accom-
modate assemblers that cannot recognize those instructions.

The primary drawback of the approach is its limited scala-
bility. Given benchmarks with larger binaries, it is practically
infeasible to gather all the ground truth manually. Thus, the ap-
proach tends to present a limited recall. This is also reflected
by that Meng et al. [22] only picked ten to twenty instances
of each construct. Despite the overall low coverage, manual
analysis (precisely, human intelligence) is indispensable to

cover certain results. Listing 3 shows an example where code
is labeled as .words in the assembly file. The assembler will
emit them as data in the code region. In this case, human
intelligence is needed to understand the replacing procedure
and thus, identify the instructions.

Reusing Existing Disassemblers. This is the most straight-
forward approach to obtaining the ground truth. It supports all
disassembly tasks and all binaries that the underlying disas-
semblers can handle. For instance, using IDA PRO for ground
truth will cover nearly everything, thus presenting perfect
generality and extendibility.

fgetspent_r:

1003ab: je 1003ae <fgetspent_r+0x3e>

1003ad: lock cmpxchg %ecx, (%ebx)

1003ae: cmpxchg %ecx, (%edx) ; overlapped instruction

AW =

Listing 4: Overlapped instructions in glibc compiled by
GCC-8.1 with O2. Line 3 and line 4 are two overlapped
instructions that share the same part starting at 0x1003ae.
OBJDUMP can only recognize the instruction at 0x1003ad.

In principle, using this approach means considering the
underlying disassembler as the oracle. Unfortunately, none of
the existing disassemblers provides perfect recall or precision,
regardless of the disassembly tasks. Consider the case of using
OBJDUMP [23] for baseline of instructions as an example.
OBJDUMP has the well-known drawback of misrecognizing
data as code, often creating false positives in the recovered
instructions. Even only considering the recall of OBJDUMP
like Nagy et al. [23], it has the issue of skipping overlapped
instructions. Listing 4 shows such an example.

The situation of using IDA PRO for baseline of jump tables
is similar. As we will show in section 4, IDA PRO produces
hundreds of false positives and false negatives when running
on the x86/x64 benchmarks presented in [26]. Applied to
MISP benchmarks, the results are even more concerning. Both
false positive rate and false negative rate are significantly
higher. Related details are covered in subsection 6.4.

Exploiting Intermediate Compiler Outputs. Ground truth
obtained with this approach is essentially compilation result
that will appear in the binary. For instance, listing files in-

2482 31st USENIX Security Symposium

USENIX Association

clude instructions eventually constitute the code in the binary.
Assuming no optimizations happen after generation of the
intermediate outputs (e.g. no link time optimizations), the fi-
delity (or precision) of the ground truth is guaranteed. In most
cases, the recall of the ground truth is also guaranteed. The
only exceptions happen when the compiler does not know the
ground truth (e.g. Listing 3) or it does not explicitly output
the ground truth in the intermediate results (e.g. Listing 4).

Despite the guaranteed precision and recall, ground truth
extracted from intermediate compiler outputs is often not easy
to use. Specifically, the results are labeled with intermediate
identities, making it complicated to map them to their coun-
terparts in the final binary. In the case of using listing files
to collect instructions [21], the available information is func-
tion names and offsets of instructions in each function. To
find those instructions in the final binary, symbols are then
used to map function names to their addresses in the binary
program. This method works in most cases but can fail when
aliased functions exist'. To further distinguish aliased func-
tions, Li et al. leverage the debug information to uniquely
associate each function with its source code location. Doing
so helps but inevitably increases the complexity and inher-
its the defects of debug information. Using RTL for jump
tables has similar issues. RTL can only tell the number of
jump tables and the number of targets of each jump table in
a function, which cannot map to the specific instances in the
binary. Applying such ground truth, for example, to evaluate
the performance of disassemblers, cannot pinpoint the errors
when detected and can even mask real errors.

Another major issue of this approach is the limited gen-
erality and extendibility. It fully depends on what outputs
the compiler is designed to export. For instance, listing files
can only be used to collect instructions and RTL may only
help jump tables. There lacks similar outputs for other disas-
sembly tasks. In addition, listing files is only supported by
GNU assembler in Linux and RTL is a unique output of GCC.
Such intermediate results may not be available when using a
different compilation toolchain.

__bn_postx4x_internal:
mov 8*0($nptr),%ri2
mov %rex,hrl0 # —$num

L S S

call __bn_postx4x_internal

Listing 5: Handwritten assembly code in openss11.1.01.
Line 1 defines a function but does not label it with . type
@function. No code symbol is created for the function.

Leveraging Compilation Metadata. This approach has a
principle similar to exploiting intermediate compiler outputs if
considering compilation metadata as compiler outputs. There
is, however, a fundamental difference. Intermediate compiler

Compilers can link aliased functions in the same binary if the functions are
declared as weak symbols (e.g., __attribute__(weak)) for GCC

outputs are essentially the ground truth before converted to
the final form in the binary, while compilation metadata is
auxiliary data that happens to carry ground truth information
for disassembly. This difference affects both precision and
recall of the ground truth.

1 ; line information | 4402cb: call 0x403760

2 Address Line 2 4402d0: mov 0x40(%rsp),%r8
3 0x4402cb 334 3 4402d5: mov 0x30(%rsp),%r9
4 0x4402da 334 4 4402da: mov (Y%rax),%rdx

Listing 6: Example in findutils where the approach
using debugging information [5] misses legitimate instruc-
tions. The left part shows two continuous records of line
information and the right part shows the related instruc-
tions. The approach in [5] starts linear disassembly at the
address encoded in the first line information (0x4402cb)
and stops at that instruction as it transfers the control flow.
It then continues the disassembly at the address encoded
in the second line information (0x4402cb). This way, it
misses two instructions at 0x4402d0 and 0x4402d5.

Symbols are created to facilitate symbolization of code or
data in scenarios like linking and debugging. A code sym-
bol, having the STT_FUNC type and representing a contiguous
code region, mostly corresponds to a function but it is not man-
dated. Modern compilers like GCC can split a function into
discontinuous regions (e.g., hot/cold function splitting [20])
and attaches a separate symbol for each region to accom-
modate debugging. Thus, using code symbols as the ground
truth of function starts can introduce false positives when dis-
continuous functions appear. In addition, the developers may
occasionally omit the @function type for function names
when creating handwritten assembly code. The compiler will
not introduce a code symbol for these functions. Thus, false
negatives can also arise when using symbols as the ground
truth for functions. Listing 5 presents such as an example.

1 ; debug 1line | 493b17: mov Yrax,%rbp
2 Address Line 2 493bla: jmpq 46dede

3 0x493b17 23 3 493b1f: 00 ; alignments
4 0x493b1f 23 4 493b20: push Y%rbx

Listing 7: Flase positive of debug information in
filezilla compiled by GCC-8.1. The left part is two
continuous records of debug information. It has the record
of address 0x493b1f. While 0x493b1f is a one byte align-
ment as shown in right part.

Debugging information is even more problematic when
leveraged to collect disassembly ground truth. It typically
includes line information to keep the address of the first
instruction compiled from each intermediate representation
statement (e.g., GCC GIMPLE). Thus, the line information
encodes locations of many instructions but not all of them. As
pointed out in section 2, attempts have been made by combing
the line information and conservative disassembly to gather

USENIX Association

31st USENIX Security Symposium 2483

ground truth of instructions. Not surprisingly, this approach
is not perfect. According to our preliminary evaluation (as
shown in Appendix A), it may miss millions of legitimate
instruction when applied to the x86 benchmarks presented in
[26]. Listing 6 illustrates why with an example. This approach
can also introduce many false instructions as line information
may point to alignment bytes instead of real instructions, as
shown in Listing 7. These problems of line information have
similar impacts when applied on mapping switch-cases in
source code to jump tables in the binary.

While compilation metadata brings less complete and less
precise ground truth, it still has advantages compared to in-
termediate compiler outputs. First, compilation metadata is
easier to use because it carries final information in the binary
(e.g., final address of an instruction) instead of intermediate
results. Second, compilation metadata, including symbols and
debugging information, is a standard feature of modern com-
pilers, regardless of the compiler version and the architecture
the produced binaries will run on. Hence, relying on compila-
tion metadata to produce disassembly ground truth shall have
excellent extendibility.

Tracing Compiling Process. The key idea of this approach is
to track the steps where the compiler generates the constructs
needed by the ground truth. It tags those constructs all the
way until they arrive at the final binaries. In a general sense,
the constructs are what the compiler views as the ground truth.
Thus, their precision is guaranteed and will not incur prob-
lems that other approaches have. For instance, the approach
records all the basic blocks that the compiler creates for a
function, regardless of where the basic blocks are placed in
the binary. This way, it can recognize non-contiguous func-
tions and avoids false positives that symbol-based approaches
produce.

Similar to using intermediate compiler outputs, this ap-
proach offers high recall but cannot cover the cases that the
compiler fails to recognize. Listing 3 and Listing 5 show such
examples of instructions and functions. In addition, develop-
ers may often create handwritten jump tables in assembly
files, which the compiler can also miss (see subsection 6.2).
Listing 4 demonstrates another special class of cases. In
this example, the compiler generates a jump from 0x1003ab
to 0x1003ae, showing its awareness of the instruction at
0x1003ae. Capturing this case requires fine-grained tracing
of compiler operations on generating assembly code, which
the tool proposed by Pang ef al. [26] does yet not support.

Besides guaranteed precision and extremely high recall,
this approach has two other advantages. First, it can support
nearly every disassembly task because it can freely collect
information from the compilation process. In this regard, the
approach has unrestricted generality. Second, the results it
collects are what present in the final binary. No extra mapping
or processing is needed before using the results.

The major drawback of this approach is the need for cus-

tomizing the compiler, the assembler, and the linker. To sup-
port a new compiler or a new architecture, high domain knowl-
edge and heavy engineering efforts are required. In this regard,
the approach has limited extendibility.

4 Implications of Imperfect Ground Truth

The existing approaches to obtaining disassembly ground
truth have varying properties. In this section, we seek to shed
light on how the properties affect the applications of those
approaches. In particular, we focus on precision and recall.
Generality and extendibility also matter but their impact is
unanimously on whether the approach can be used or not.

To support the understanding, we consider the approach by
tracing the compiling process as the oracle approach and use
its results as the “golden” ground truth. Specifically, we patch
the tool developed by Pang ef al. [26] to mitigate the recall
issues discussed above and run the patched tool to collect
the ground truth for instructions, function starts, and jump
tables. Technical details of our patch are shortly presented
in section 6. We also recompile the benchmarks presented
athttps://github.com/junxzml1990/x86-sok to work as
the target binaries. Following the setup of [26], all target
binaries are compiled to run on the x86/x64 architectures. We
omit other architectures because the related tools either only
support x86/x64 or the related results will be discussed in
subsection 6.4.

Table 2: Performance of BYTEWEIGHT trained with
ground truth produced by different approaches (Symbol in-
dicates using symbols as the ground truth of function starts
while Oracle indicates using the approach presented in [26].

Metric | GT | 00 | Ol | 02 | 03 | Os | oOf

Symbol | 99.52 | 96.94 | 98.01 | 98.38 | 96.00 | 98.39
Oracle | 9954 | 9694 | 97.66 | 98.18 | 96.19 | 08.18
Symbol | 99.67 | 9742 | 94.73 | 90.88 | 9835 | 9061
Oracle | 99.69 | 97.89 | 99.21 | 99.37 | 98.46 | 99.39
Symbol | 99.59 | 97.17 | 9634 | 9448 | 97.18 | 9433
Oracle | 99.61 | 9741 | 9843 | 98.77 | 9757 | 98.78

Recall

Precision

F1-Score

Impacts on Training Accuracy. Disassemblers based on data
mining or machine learning need ground truth knowledge
when training the classification models. Intuition suggests
that fidelity of the ground truth can affect the model accuracy.
To this end, we perform a study on BY TEWEIGHT [10],
a data mining based approach to detecting function starts.
We train BYTEWEIGHT twice, respectively using ground
truth obtained from symbols and produced by the oracle ap-
proach [26]. Symbols, instead of other approaches, are con-
sidered as the baseline to align with the setting of the original
evaluation on BYTEWEIGHT [10]. Both BYTEWEIGHT
models are then tested using the ground truth offered by the
oracle approach to understand their precision, recall, and accu-
racy (Fl-score: 2tLrecisionsRecally " A] the training and testing

Precision+Recall . .
are based on coreutils-8.30 compiled with GCC-8.1 (no

2484 31st USENIX Security Symposium

USENIX Association

https://github.com/junxzm1990/x86-sok

overlap between the training dataset and the testing dataset).
To diversify the evaluation, common optimization levels (OO0,
01, 02, O3, Os, Ofast) are all considered.

Table 2 summarizes the evaluation results. Evidently, the
choice of ground truth has an impact on the model accu-
racy, regardless of the optimization level. Specifically, models
trained with the golden ground truth present a consistently
higher accuracy. At higher optimization levels (O3 and Of),
the accuracy difference can exceed 4%. These results are an-
ticipated considering that symbols carry many false function
starts introduced by non-contiguous functions.

Table 3: Performance of XDA on instruction recovery trained
with ground truth produced by different approaches (Debug in-
dicates using the debug information based approach proposed
in [5] while Oracle indicates using the approach presented
in [26] (with our patch presented in subsection 6.2).

Metic | GT | 00 | O1 | 02 | 03 | Os | oOf
Recall Debug | 9147 | 91.82 | 9191 | 91.66 | 92.61 | 9138
Oracle | 96.76 | 9537 | 9538 | 95.11 | 95.13 | 94.89
Precision |_DcPud_| 9921 | 9892 | 9884 | 9924 | 96.05 | 99.29
Oracle | 99.26 | 98.96 | 9889 | 99.27 | 95.07 | 99.31
Fl.Score | _Debug | 95.18 | 9523 | 9525 | 9530 | 9430 | 95.17
Oracle | 97.99 | 97.13 | 97.10 | 97.14 | 95.15 | 97.05

We further extend the experiment on running XDA [28],
a transfer learning based disassembler, for instruction re-
covery. In this experiment, two non-overlapped subsets
of coreutils-8.30 and findutils-4.4 are respectively
picked for training and testing. We further use two different
ground truth approaches, the oracle approach [26] and the
debug information based approach [5], to label the training
data. In contrast, the testing data is unanimously labeled using
the oracle approach. The experiment results are summarized
in Table 3. Again, the ground truth approach has an observable
impact on XDA. In particular, the recall of XDA can drop by
4% when using an improper approach of ground truth.

Finding #1: The fidelity of ground truth affects the util-
ity of disassembly tools built with data mining or ma-
chine learning. Highly accurate ground truth is desired.

Impacts on Tool Evaluation. The testing of disassembly
tools, which is highly critical to their evolvement, greatly
depend on ground truth knowledge. The recall and precision
of the ground truth can both affect the evaluation. In particular,
incomplete or inaccurate ground truth can provide distorted
evidence towards unreliable conclusions. We elaborate on
three such cases in the following.

Case 1: Meng et al. [22] leverage manual analysis to col-
lect ground truth to measure their tool, DYNINST, in identify-
ing complex constructs. As we pointed out before, they only
covered a small set of the ground truth (10-20 instances of
each construct) due to the heavy burden. Using this set of
ground truth, they obtained the observation that DYNINST

Table 4: Performance of DYNINST on identifying complex
constructs under different approaches to extracting the ground
truth. Manual indicates the ground truth is manually collected
from the testsuite presented in [22]. Oracle indicates the
ground truth from the testsuite presented by [26]. Embedded
means data embedded in code, which is only evaluated on
binaries that contain data-in-code.

Metric | GT | Embeded | JMPTBL | Tail Call
Recall Manual 100.0 100.0 100.0
Oracle 89.55 98.61 71.7
Precision |_anual 100.0 100.0 100.0
Oracle 99.35 99.83 67.39
F1-Score | M2nual 100.0 100.0 100.0
Oracle 94.19 99.21 69.43

achieves full recall and full precision. We extended the bench-
mark to include all the x86/x64 binaries presented in [26]
and run the oracle approach (with our patch) to gather the
ground truth of three complex constructs aligned with our
target disassembly tasks (data embedded in code, jump tables,
and tail calls”). Table 4 presents the evaluation results using
our extended benchmark. Evidently, DYNINST may not pro-
vide perfect recall and precision, invalidating the observation
presented in [22]. This case demonstrates that incomplete
ground truth can lead to biased claims and conclusions.

Table 5: Performance of ZAFL on instruction recovery.
Objdump-Sym indicates we run OBJDUMP on binaries with
symbols for the ground truth while Objdump means we run
OBJDUMP on stripped binaries. Oracle shows the results of
using the approach presented in [26] to get the ground truth.

Metric | GT | o0 | 02 | 03 | 0s | of
Ob dump-Sym 0 3 3 135 134

#0of FP [Objdump 0 3 3 135 134
Oracle 0 17 40 203 189

Objdump-Sym | 628.8K | 754.5K | 733.4K | 354.6K | 860.8K
#of FN Objdump 683.8K | 819.4K | 797.8K | 408.4K | 928.2K
Oracle 83.4K 84.1K 842K | 145.7K | 145.1K

Case 2: Nagy et al. [23] consider the results of OBJIDUMP
as the baseline to measure their ZAFL tool in recovering
instructions. They observed that ZAFL incurs zero false
positives on both closed-source and open-source binaries.
They also reported that ZAFL misses no instructions that 24-
hour fuzzing can reach. We reproduced the evaluation with
three approaches to generate the ground truth: (i) OBJDUMP
with symbols available in the target binaries; (ii) OBJDUMP
with stripped binaries; and (iii) the oracle approach with our
patch. We also used the x86/x64 benchmarks developed by
Pang et al. [26] except for those compiled by Clang for 32-bit
machines’. The evaluation results are presented in Table 5.

2Identification of tail calls can be trivially done when the results of instruc-
tions, functions, and jump tables are available
37 AFL relies on the information carried in .eh_frame to determine the

USENIX Association

31st USENIX Security Symposium 2485

Not surprisingly, the ground truth approach affects the obser-
vations. Using the oracle approach, we observe more false
positives in most cases. This indicates ZAFL may make more
mistakes than it was believed to. On the other hand, ZAFL
seems to produce much fewer false negatives than what the
OBJDUMP-based measurement shows. It is worth mentioning
that the false negatives we observe do not conflict with the
conclusions in [23], as we do not measure how many of the
false negatives can be reached by fuzzing in 24 hours.

100.0
97.51 r

95.01

92.51

90.0

87.54

85.0

82.54

80.0

00 02 03 Os of
Optimization Level

Figure 2: Distribution of precision of IDA PRO on detecting
jump tables in the x86/x64 binaries presented in [26].

Case 3: Kinder et al. [18] consider the results of IDA
PRO as the baseline for evaluating their JAKSTAB tool in
detecting jump table related constructs. A key observation
they obtained is that JAKSTAB produces nearly zero false
positives. We hoped to re-evaluate JAKSTAB using ground
truth produced by different approaches. However, JAKSTAB
cannot run modern benchmark binaries due to a parsing er-
ror (https://github.com/jkinder/jakstab/issues/9),
which was also observed by Pang et al. [26].

Alternatively, we chose to measure the precision of IDA
PRO in detecting jump tables, considering the ground truth
produced by the oracle approach as the baseline. In the mea-
surement, the benchmark consists of all x86/x64 binaries pre-
sented in [26]. Figure 2 shows the distribution of the precision
of IDA PRO on different binaries. In a nutshell, IDA PRO is
not perfectly precise. It makes many mistakes, in particular at
the higher optimization levels. We envision this imprecision
in the ground truth used by Kinder et al. may pose a risk on
their observations and understandings of JAKSTAB. However,
we cannot directly confirm this as we did not run JAKSTAB.

Finding #2: The use of incomplete or imprecise ground
truth can lead to misleading observations and conclu-
sions about the disassembly tools, which can impede
their future development.

ranges of disassembly. However, the 32-bit binaries produced by Clang do
not contain .eh_frame.

Impacts on Tool Comparison. In recent years, there have
been a series of studies on comparing different disassembly
tools [5,17,26]. This is another scenario where ground truth
information is indispensable. A common goal of the studies is
to rank the tools based on their performance. Hypothetically,
the ranking can vary when different ground truth approaches
are used.

We perform an empirical study to experiment on the hy-
pothesis. A challenge of the study is the selection of bench-
mark binaries. Many benchmarks only contain easy constructs
of the ground truth, which can be perfectly identified by ev-
ery ground truth approach. Using those benchmarks makes
little sense for our study. To address this issue, we revis-
ited the benchmarks presented in [26] and finally picked
Openssl-1.1.01. The primary reason is Openssl-1.1.01
carries plenty of complex constructs (e.g., handwritten as-
sembly and data in codes), which the existing ground truth
approaches cannot handle well.

We compiled Openssl-1.1.01 with GCC-8.1 into
x86/x64 binaries under different optimization levels (00, O1,
02, 03, Os, and Ofast). We focus on x86/x64 architectures
because the original evaluation of many mainstream disas-
semblers consider this architecture [5,21,26,28]. Utilizing the
binaries, we measure the accuracy (F-1 score) of 8 popular
disassemblers on recovering instructions three times, respec-
tively using ground truth produced by OBJDUMP with sym-
bols, the debug information based approach proposed in [5],
and the compiler-tracing approach proposed in [26] (after ap-
plying our patch presented in section 6). Figure 3 summarizes
the results averaged on the optimization levels.

Evidently, the disassemblers present "varying" accuracy
when the approach to obtaining the ground truth changes. This
accuracy difference can often lead to variation of the rankings.
Consider the comparison between IDA PRO and BINARY
NINJA, the two state-of-the-art commercial disassemblers, as
an example. BINARY NINJA outperforms IDA PRO when
measured using the less accurate ground truth (objdump).
However, the result flips when we switch to the oracle ground
truth, despite the margin is small.

Finding #3: Different ground truth approaches “affect”
the performance of disassembly tools. When used in
evaluation studies, the ground truth approaches can make
the rankings deviate from the reality.

S Discussion: What Do We Need Today?

The previous sections bring us a better view of the existing
approaches to generating ground truth for disassembly, in-
cluding their mechanisms, properties, and implications. A
key, follow-up question is what approaches we need today.

Recall and Precision. We argue that the most important cri-
terion of selecting ground truth approaches shall be recall and

2486 31st USENIX Security Symposium

USENIX Association

https://github.com/jkinder/jakstab/issues/9

IDA Pro
Binary
Ninja
Ghidra
Angr

Dyninst

Objdump

Bap
mm oracle
6 mm objdump
78.02 debug info
70 75 80 85 90 95 100
F1 Score

Radare2

Figure 3: Accuracy (F-1 score) of popular disassemblers
on recovering instructions, measured using different ground
truth approaches (oracle indicates the compiler tracing ap-
proach presented in [26], ob jdump means using objdump with
symbols, and debug info represents the debug information
based approach proposed in [5]).

precision. On the one hand, recall and precision are scientific
standards of ground truth in general. In other domains and
scenarios, ground truth is expected to be complete and precise.
On the other hand, our studies presented in section 4 unveil
various scenarios where incomplete or imprecise ground truth
leads to biased observations and improper conclusions.

Among the existing approaches to building the ground
truth, manual analysis and reusing existing disassemblers lack
necessary mechanisms to ensure recall or precision. Lever-
aging compilation metadata inherits the knowledge from the
compiler, which seems to be more promising. However, the
knowledge is often not exactly the ground truth. Conversions
from the knowledge to the needed ground truth can introduce
errors or miss cases. In this regard, leveraging compilation
metadata also has an insufficient guarantee of recall and pre-
cision.

In contract, the remaining two approaches, exploiting inter-
mediate compiler outputs and tracing the compiling process
are better grounded. Their inputs are ground truth directly out-
put by the compiler. Thus, they are guaranteed by the compiler
to present complete and accurate results except for the few
cases where the compiler has insufficient knowledge. From
this perspective, we conclude that the two approaches are
more desired today.

Generality and Extendibility. Modern disassemblers are
being extended to support various disassembly tasks on all
kinds of binaries. This indicates that, besides recall and preci-
sion, it is also important to have ground truth approaches that
are general and extendable. Regarding generality, tracing the
compiling process is much better than using the intermediate
compiler outputs, considering that it can capture anything
the compiler knows about without restrictions from the exist-
ing implementation of the compiler. Extendibility wise, the
two approaches are similarly restricted. To extend support

Function +|Basic Block /| Jump Table

Basic Block 1 s ,"’ Oxaa:

s) /| Table Entry 1
- / Instructions
Basic Block 2 / Table Entry 2
',"’ Table Entry 3
jmp *0xaa(,%rdx,8)
Basic Block n R

Alignments Table Entry n

Figure 4: Metadata used by ORACLEGT to track the ground
truth of instructions, functions, and jump tables. Function
represents a function, which consists of a set of Basic
Blocks. Each basic block has two regions, the instructions
and alignment bytes (if any). A basic block also has a field
indicating whether it can fall through. An indirect jump that
encodes a Jump Table is also marked with the list of targets.

for other compilers or architectures, both approaches need to
extend the compilation toolchain.

Conclusion. Overall, tracing the compiling process is the
approach that can best satisfy today’s need. However, the
only tool [26] supporting this approach still has two major
limitations. First, the tool is not providing results with perfect
recall, despite it shall never make mistakes. It cannot cover
the ground truth that the compiler cannot recognize, including
the aforementioned code encoded as data, functions without
a proper label, and handwritten jump tables. It can also miss
ground truth that needs more fine-grained tracing, such as the
overlapped instructions. Second, the tool currently can only
support x64/x86 binaries. It urgently needs an extension to
support other architectures, in particular those gaining more
popularity nowadays (e.g., ARM and MIPS).

6 Towards Better Ground Truth

Inspired by our discussion above, we further aim to extend
the tool presented in [26] to provide better ground truth for
binary disassembly. For simplicity of presentation, we will
call the tool ORACLEGT. In the rest of this section, we first
introduce the technical background of ORACLEGT and then
explain our improvements and extensions. Finally, we present
an application of the extended ORACLEGT to show its bene-
fits.

6.1 Background

ORACLEGT supports both GCC and Clang for x86/x64 bi-
naries. Considering the internal mechanisms for both GCC
and Clang are highly similar, we hereby use GCC as the ex-
ample to explain how ORACLEGT works. At the high level
idea, ORACLEGT instruments the GCC front-end, the GAS
assembler, and the gold linker to insert metadata structured
as Figure 4 to the outputs at different compilation stages.

USENIX Association

31st USENIX Security Symposium 2487

| .bbInfo_FUNB I cmpl $10, %r8d

2 .bbInfo_BB 2 ja .L1021

3 pushq %rib 3 mov rax, .L1001(,%r8,8)
4 subq $8, %rsp 4 jmp *rax

5 xorl hedi, %hedi 5

6 ... 6 .bbInfo_JMPTBL 11 8

7 call as_fatal 7 .L1001

8 .bbInfo_BE 0 8 .quad .L1003

9 .bbInfo_FUNE 9 ...

Listing 8: An example of assembly code with directives
inserted by ORACLEGT. In the left part (i) .bbInfo_FUNB
and .bbInfo_FUNE label the range of a function; (ii)
.bbInfo_BB and .bbInfo_BE label the range of a ba-
sic block; (iii) O after .bbInfo_BE means the current
basic block does not fall through. In the right part,
.bbInfo_JMPTBL indicates that the data below represents
a jump table, and the follow-up 11 and 8 mean the jump
table as 11 entries with every entry of 8 bytes.

Compiling. When GCC front-end finishes the final RTL
pass [2], it will output the assembly code to be processed
by the assembler. In this step, GCC controls the locations
of functions, basic blocks, and instructions. Intercepting the
process, ORACLEGT inserts extra directives to label the three
constructs. To better illustrate the idea, we show an example
in Listing 8. One thing worth mentioning is that every func-
tion in the assembly file is contiguous. The later processing
by the assembler may split a function into different regions.

Assembling. When the assembly file is fed into the GAS
assembler, ORACLEGT intercepts the assembly process to
transfer the inserted directives into another form of metadata.

* Functions: When encountering a .bbinfo_FUNB directive
during assembly, ORACLEGT initializes a FUNC structure
and records the offset from the function start to the current
fragment (the basic unit that assemblers use to store con-
tiguous code or data). When a follow-up .bbInfo_FUNE is
met, ORACLEGT marks the end of the current function in
the FUNC structure.

e Basic Blocks: When a .bbInfo_BB directive is reached
between a .bbinfo_FUNB and a .bbInfo_FUNE, ORA-
CLEGT creates a BBL structure to record the offset from the
current basic block to the current fragment. When the cor-
responding .bbInfo_BE appears, ORACLEGT will record
whether the basic block falls through in the BBL structure. If
the basic block contains an alignment region, ORACLEGT
will further record the location and size of the alignment.
The BBL structure, when completed, will be appended to
the current function.

e Instructions: When an instruction is assembled, ORA-
CLEGT gets its size and updates the size information in
the BBL structure of the current basic block.

* Jump Tables: When a .bbInfo_JMPTBL directive is seen,

ORACLEGT creates a JMPTBL structure to track the location
of the jump table (the offset from the jump table to the
current fragment), the number of entries, and the size of each
entry. Further, ORACLEGT records the reference(s) to the
jump table. For instance, in the example shown as Listing 8,
ORACLEGT will record the reference to the jump table
at line 3 (.L1001). Note that no extra efforts are needed
to gather the references as ORACLEGT internally collects
them from the assembler.

At the end of assembling a file, the assembler will finalize
the location of each fragment in the object file. At this point,
ORACLEGT updates the FUNC, BBL, and JMPTBL structures
to replace the offset to the current fragment with the offset
to the object file. All the structures are then organized as an
.gtinfo section in the object file.

Linking. In this stage, the linker merges different object files
to generate the final binary. ORACLEGT instruments this link-
ing process to finalize the addresses of functions, basic blocks,
jump tables encoded in the FUNC, BBL, and JMPTBL structures.
It also merges the .gtinfo section from all object files into
a single . gtinfo section in the binary. Alignments inserted
by the assembler between object files are also recorded into
the . gtinfo section.

Extracting. Based on the metadata stored in the .gtinfo
section, ORACLEGT extracts the ground truth information.
Specifically, function and basic block information can be eas-
ily obtained by reading the FUNC and BBL structures. Given
the range of a basic block, ORACLEGT runs linear disassem-
bly in the code region to collect the instructions. ORACLEGT
also records alignment information. This way, when disas-
sembly identifies a instruction inside an alignment region,
ORACLEGT can mark it as a “harmless” false positive.

The extraction of jump tables is a bit more complex. Based
on the metadata, we only know the location and size of each
jump table and the instruction(s) referencing the jump table.
There is no direct information about which indirect jump uses
the jump table. To pinpoint the indirect jump, ORACLEGT
runs forward taint analysis to track the propagation of the
reference to the jump table until an indirect jump. Consider
Listing 8 as an example. ORACLEGT will track the reference
to .L1001 at line 3 all the way to the indirect jump at line 4.
The details of our taint analysis are presented in algorithm 1.

6.2 Improvements

Our major improvement is a post-compilation analysis to
identify three sets of missing ground truth.

Instructions Encoded as Data. As demonstrated in List-
ing 3, the developers can encode instructions as data, which
shall mislead the compiler. We extend ORACLEGT to iden-
tify those instructions. Basically, we reconstruct the control

flows of each function reported by ORACLEGT and collect

2488 31st USENIX Security Symposium

USENIX Association

direct control transfers to regions that are considered data by
the compiler. On identifying such a control transfer, we run
recursive disassembly from the target location to gather the
missing instructions. To ensure correctness, our disassembly
is conservative. In particular, we skip all indirect control trans-
fers whose targets remain unknown and we assume a function
does not return if we are unsure.

Applying our extension to the x86/x64 benchmark pre-
sented in [26], we observed 1,378 data regions embedded in
code and 1,356 of them are actually instructions. We manu-
ally examined the remaining data regions and believe none of
them carries instructions.

Overlapped Instructions and Missed Functions. Native
ORACLEGT can not mark overlapped instructions (Listing 4)
and functions without a proper label (Listing 5). We use the
same approach to handle both cases. Checking the targets
direct jumps and jump tables reported by ORACLEGT, we
verify whether the targets point to the middle of other in-
structions. If so, we consider them overlapped instructions.
Similarly, we identify direct calls whose targets do not point
to a known function and consider those targets previously
missed function starts. Running the extension on the above
benchmark, ORACLEGT discovers 2,108 more overlapped
instructions and 76 missed functions.

Handwritten Jump Tables. Developers may also manually
create jump tables in handwritten assembly files. No standard
labels are available to notate such jump tables and thus, the
compiler cannot recognize them. We propose a new method
to identify handwritten jump tables based on three insights.
First, the targets of such a jump table should have data-to-code
(d2c) references that are contiguously arranged in the data
region. Second, the assembly code should contain a code-to-
data (c2d) reference to the base address the jump table. Third,
the base address should propagate to an indirect jump. Below
elaborates on the specifics of our method.

o Step-1: We enumerate all the available d2c references to
pinpoint the contiguous ones pointing to the same function
in handwritten assembly. All the d2c references are natively
gathered by ORACLEGT from the compiler, which requires
no extra operations. We consider those d2c references po-
tential jump table targets.

* Step-2: We visit the c2d references and identify those point-
ing to a d2c reference collected in Step-1. Each of the c2d
references is considered the base address of a jump table.

* Step-3: We run forward taint analysis from each c2d ref-
erence determined at Step-2 and validate whether it prop-
agates to the target of an indirect jump. If that happens,
we consider the c2d reference points to a real jump table
enforced at the indirect jump.

Using the above method on the benchmarks presented in [26]
again, we collected 1,882 jump tables missed by ORACLEGT.

6.3 Extending

Besides improving the recall of ORACLEGT, we further ex-
tended its support on both GCC/Clang for other popular archi-
tectures, including ARM32, AArch64, MIPS32 and MIPS64.
To realize the extension, we do not need to change the com-
piler front-end and the linker since ORACLEGT’s operations
at the two stages are architecture-independent. The major
work is to adapt the modules to assemble ARM32 / AArch64
/ MIPS32 / MIPS64 code in the GCC GAS assembler and
the Clang integrated assembler. The adaptation is mostly
straightforward by following the procedure described in sub-
section 6.1. Below we discuss some details worth mentioning.

Adding Type Information of Basic Block. ARM32 includes
two execution modes, ARM mode and Thumb mode [7]. The
encoding of instructions are different under the two modes.
Thereby the detection of execution mode is a critical task
for ARM disassemblers. To support evaluation of this task,
we extend ORACLEGT to add an extra directive to mark the
execution mode of ARM32 basic blocks. Knowledge of the
execution mode can be easily obtained by querying the GCC
GAS assembler or the Clang integrated assembler.

cmp $0x57, %rdx cmp r5, #3

1
2 ja .Ldefault 2 1drls pc, [pc,r5,1sl #2]
3 jmpq *.LJMPTBL(,%rdx,8) 3 b .Ldefault
4 ... 4 .LJMPTBL
5 .LJMPTBL: 5 entry 1
6 entry 1 6 entry 2
7 ... 7 ...
8 entry ni 8 entry n2

Listing 9: Examples of explicit reference and implicit ref-
erence to jump tables. The left shows a x64 example which
contains an explicit reference to the jump table (line 3).
The right part is an example of ARM32, there is no ex-
plicit reference to the jump table. Instead, the reference
to jump table is held by pcin [pc, r5, 1lsl #2](line 2)
implicitly.

Detecting Implicit References to Jump Tables. As pointed
out in subsection 6.1, ORACLEGT relies on explicit refer-
ences to a jump table to locate the corresponding indirect
jump. However, a jump table may not always be explicitly
referenced in ARM binaries (i.e., the references may not be
recognized by the compiler). The right part of Listing 9 shows
one such example. To handle such cases, we design a method
as follows. Given a jump table without explicit references, we
visit the use of the pc register in the assembly code placed
before the jump table and inspect whether the pc register is
an implicit reference to jump table. If so, we create a dummy
reference to mark the implicit reference.

Taint Analysis Across Memory. When extracting the ground
truth of jump tables, ORACLEGT runs taint analysis to track
the propagation of the reference(s) to the jump table. On
x86/x64 binaries, it is sufficient to only track the registers.

USENIX Association

31st USENIX Security Symposium 2489

However, on ARM/MIPS binaries, the referenced value can
propagate through the stack. Thus, we extend the taint analysis
in ORACLEGT by adding the supports of taint propagation
among stack memories.

mm Original OracleGT
mm Improved OracleGT

Angr
IDA Pro
Binary
Ninja
Ghidra

Dyninst

Radare2

F1 Score

Figure 5: Accuracy (F-1 score) of popular disassemblers on
recovering jump tables from glibc, measured using the orig-
inal ORACLEGT and our improved ORACLEGT.

Discussion. To illustrate the benefits of our improvement to
ORACLEGT, we perform a small case study. Specifically, we
measure the accuracy of six popular disassemblers on recov-
ering jump tables from glibc, separately using the original
ORACLEGT and our improved ORACLEGT for ground truth.
We focus on jump tables and glibc as the impact of our im-
provement in this setup is more evident. Figure 5 shows the
evaluation results. The key observation is that our improve-
ment to ORACLEGT meaningfully helps understand the true
accuracy of existing disassembly tools.

While our improvement is beneficial, it is still not perfect.
All our improvement strategies are designed to be conser-
vative, which are error-free and maintain the correctness of
ORACLEGT. However, the strategies, when coupled with OR-
ACLEGT, can still miss cases, which we discuss as follows.

e Instructions: Given functions that (i) cannot be recognized
by the compiler and (ii) are not directly called by any other
recovered functions, we cannot realize their existence. Thus,
we will miss their instructions. In addition, we will miss
instructions that can only be reached by the fall-through
edge of a function call whose return status is unknown. This
is because we conservatively assume a function does not
return unless we know for sure.

* Functions: As described above, we cannot identify func-
tions that (i) cannot be recognized by the compiler and (i)
are not directly called by any other recovered functions.

e Jump Tables: We perform taint analysis to pinpoint the
indirect jump pertaining to each jump table. Inspired by em-
pirical observations, we only track taints propagated across
stack memory and registers. In theory, we can under-taint a

Precision Recall

100 pae
100 + Eomee AT
N AN
20 - "
95 \, + / N
80 \, /S oom N
n \ / AN
20 N /
70 NS »
N/
85 60 Y .
50 =
80 - Objdump
" e~ Ghi
a0 -%- Angr
75 = Radare2
30 ~#- IDA Pro
- Binary Ninja ~+- Binary Ninja
20
x86/x64 Arm Thumb AArch64 Mips x86/x64 Arm Thumb AArch64 Mips

(a) Instruction

Precision Recall

hidra
\ngr
adare2
IDA Pro

- Binary Ninja

x86/x64 Arm Thumb AArch64 Mips X86/x64 Arm Thumb AArché4 Mips

(b) Function Start

Precision Recall

100 e - 100
— e

401 - Binary Ninja

x86/x64 Arm Thumb AArch64 Mips X86/x64 Arm Thumb AArch64 Mips

(¢) Jump Table

Figure 6: Recall and precision of mainstream disassemblers
on binaries with different architectures.

target that propagates through non-stack memory and thus,
miss the corresponding jump table.

6.4 Application

Leveraging our extensions, we rebuild the testsuites presented
in [26] with both GCC-8.1 and Clang/LLVM-6.0 to run on
ARM32 (with ARM and Thumb mode), AArch64, MIPS32
and MIPS64 architectures. For every program, we build it
with various optimization levels (02, O3, Os, Ofast), which
finally generates a testsuite with 6,328 binaries. Based on
the testsuite, we re-evaluate OBIDUMP-2.30 [14], GHIDRA-
9.04 [24], ANGR-8.19.5.25 [9], RADARE2-4.4.0 [30], IDA
PRO-7.4 and BINARY NINJA-1.2 with all binaries stripped.
Figure 6 shows the average results of instruction recover,
function start detection, and jump table reconstruction by
different disassembly tools. The actual numbers are presented
in Table 7 in the Appendix. According to the evaluation,
we summarize three observations that were previously less-
known.

The performance of modern disassemblers vary across
architectures. As shown in Figure 6, modern disassemblers

2490 31st USENIX Security Symposium

USENIX Association

present very inconsistent performance when applied to bi-
naries running on different architectures. Overall, they all
present high recall and precision on x86/x64 targets, regard-
less of the disassembly tasks. We envision two major reasons
leading to this phenomenon. On the one hand, disassemblers
are mostly created to work on x86/x64 binaries. They have
received longer and broader improvement to handle x86/x64
binaries. On the other hand, benchmarks and ground truth ap-
proaches to evaluate disassembly are better ready for x86/x64
binaries [5,26], greatly benefit the evolving cycle.

ARM32 poses a bigger challenge than AArch64 to modern
disassemblers. Many disassemblers show limitations when
handling ARM32 binaries, in particular the code running in
the Thumb mode. This has been similarly unveiled by a recent
study et al. [17]. However, no research has been conducted to
run a comparison between ARM32 and AArch64 like what we
show in Figure 6. In most of the cases, disassemblers perform
significantly better on AArch64 binaries than on ARM32
binaries. While this is not surprising considering that ARM32
uses the mixed modes of ARM and Thumb, our evaluation
brings quantitative evidence to back the observation.

1 410980 <quotearg_buffer>: ; load base of jmptbl

1
2 ... 2 1d v1,-32720(gp)
3 ; initialize gp 3...
4 ; at = 0x2 << 16 4 daddu at,at,vl
5 lui at,0x2 5 ; load entry of jmptbl
6 daddu at,at,t9 61d at,-16952(at)
7 daddiu gp,at,30512 7 daddu at,at,gp
8 ... 8 jr at

Listing 10: Examples of jump table in coreutils-8.30
compiled by Clang-6.0 for MIPS. The right part is an
example which calculates the target of indirect jumps de-
pending on the value of gp. The left part shows that gp is
initialized at the beginning of the function. Its calculation
is explained as follows: When calling a function, t9 stores
the address of the called function. Thus at the beginning
of a function, t9 holds the address of current function. In
this example, the value of t9 is 0x410980. In order to
calculate the value of gp, disassembler should recover the
correct address of function.

Commercial disassemblers are less effective with handling
MIPS binaries. Commercial disassemblers, like IDA PRO
and BINARY NINJA, are widely believed to be very pow-
erful in dealing with modern binaries. This is very true on
x86/x64 binaries. However, opposite observations arise when
we switch them to handle MIPS binaries. Both IDA ProO
and BINARY NINJA present massively reduced utilities when
disassembling MIPS binaries. In particular, when recovering
jump tables, the precision and recall of IDA PRO drop to
81.39% and 51.98%. BINARY NINJA has a higher precision
(91.52%) but its recall is also only 56.56%.

Motivated to understand why the commercial tools have a
downgrade in performance, we manually inspected a set of

jump tables missed by both IDA PRO and BINARY NINJA.
We found that the calculation of jump table targets relies
on the value of register gp* as shown in Listing 10. And
the value of gp is calculated at the beginning of a function
based on the address of the current function. However, both
IDA PRO and BINARY NINJA miss plenty of function starts
on MIPS binaries, indirectly causing the low recall of jump
tables.

7 Related works

Generating Ground Truth for Binary Disassembly. As an
essential step toward many binary analysis techniques, collect-
ing ground truth for binary disassembly has attracted increas-
ing attention. One line of researches [5,6, 10, 17,28,29,35]
follow a so-called standard strategy which uses address em-
bedded in symbols as the ground truth. However, as discussed
in §3, ground truth relying on symbols is nether accurate
nor complete. In comparison, Meng ef al. [22] manually col-
lected ground truth for a small set of instructions, functions,
and control flows. This approach can achieve extremely high
precision but is less popular due to the scalability limitation.
Meanwhile, another line of researches [18,23] rely on ground
truth generated by the existing disassemblers. For instance,
Nagy et al. [23] leverage disassembling result from OBJ-
DUMP as the baseline while Kinder et al. [18] directly reuse
the jump tables detected by IDA Pro. Unfortunately, as shown
in Pang et al. [26], none of the existing disassembler does
perfect on various binary challenges, which leads to the fact
completely trust disassemblers has more disadvantages than
benefits.

On the other hand, more compelling and reliable ap-
proaches generating ground truth relies on either the interme-
diate compiler outputs or compilation metadata. For instance,
David ef al. [34] dump the intermediate representation of
GCC and extract the rough data of jump tables, but they could
not map the information to the final executable files. [5,28]
generate ground truth by performing conservatively linear
sweeping between continuous regions based on debug line
information. Failing to take unreachable alignment code into
consideration, Andriesse et al. ’s approach [5] still misses
about 2% instructions. In contrast, Li et al. [21] leverage
the listing files produced by GNU Assembler to extract the
ground truth, but they struggle on mapping the instructions
into final executable files. As the most closely related work
to ours, Pang et al. [26] collect the ground truth by tracing
compilation process, which guarantees high precision and
recall. As a work in a later position, we not only extend the
tracing compilation process approach to more architectures
but also fix corner cases missed by Pang et al. [26].

Discussion on Ground Truth for Binary Disassembly. A

4gp is used as a global pointer pointing to the midst region of 64K static
data [1], which is initialized at runtime.

USENIX Association

31st USENIX Security Symposium 2491

recent study by Alves-Foss et al. [4] discusses challenges in
defining and identifying ground truth for binary disassembly.
The study further lists some common approaches to gener-
ating the ground truth and showcases issues related to those
approaches. Our paper can be viewed as the next step of this
study. We present a systematic taxonomy and comparison of
the existing approaches, unveil the implications behind the
imperfection of those approaches, pinpoint the more appropri-
ate approach, and shed light on building trustworthy ground
truth for binary disassembly.

Evaluation of Binary Disassembly. Binary disassembly
is a critical task for binary analysis. Recently, many re-
searches [5,10,17,21,26,32] have made great effort on binary
disassembly evaluations. Jinag ef al. [17] built testsuite on
Arm32 and evaluate the performance of disassemblers on in-
structions recovery. Li et al. [21] evaluate the performance
of instructions recovery among different disassemblers on
x86/x64. [5,26] build large scale testsuite on x86/x64 to
evaluate the performance of disassemblers on instructions,
function start and jump tables recovery. [6, 10, 32] evaluate
function starts identifications on x86/x64. All above men-
tioned papers mainly focus on evaluating binary disassembly
within a specific architecture. As a compensation, our paper
concentrates on improving the ground truth used by binary
disassembly on all popular architectures.

8 Conclusion

This paper concerns the approaches to generating ground
truth for binary disassembly. We bring a taxonomy of the
approaches used by past research, unveiling the mechanisms
behind the approaches. Throughout a systematic comparison
of the mechanisms, we present a deep understanding of the
mechanisms regarding the key properties (recall, precision,
generality, and extendibility) that affect their applications. In
a follow-up empirical evaluation, we further validate that de-
fects in those properties can significantly hurt the applications
and even lead to misleading conclusions. Finally, we identify
and rectify the limitations of the tool that carries the best
potential to meet those properties. This effort is expected to
benefit various use scenarios of disassembly ground truth. In
particular, we demonstrate that using this tool to re-evaluate
the mainstream disassemblers leads to many previously less-
known observations. We hope this piece of research can pro-
vide references and tools to standardize and unify the ground
truth in binary disassembly evaluation.

Acknowledgements

We thank our shepherd Tiffany Bao and anonymous reviewers
for their feedback. We also thank Kexin Pei for helping with
the experiment on XDA. Chengbin Pang, Tiantai Zhang, and

Bing Mao were supported by Chinese National Natural Sci-
ence Foundation(Grant#: 61272078, 62032010, 62172201).
Ruotong Yu and Jun Xu were partially supported by the Office
of Naval Research (Grant#: N00014-17-1-2787). Any opin-
ions, findings, and conclusions or recommendations expressed
in this paper are those of the authors and do not necessarily
reflect the views of the funding agency.

References

[1] Mips assemble language. https://training.mips.
com/basic_mips/PDF/Assemble_Language.pdf,
2021.

[2] Rtl passes, gnu compiler collection (gcc) inter-
nals. https://gcc.gnu.org/onlinedocs/gccint/
RTL-passes.html, 2022.

[3] National Security Agency. Ghidra. https://www.nsa.
gov/resources/everyone/ghidra/, 2021.

[4] Jim Alves-Foss and Varsha Venugopal. The inconve-
nient truths of ground truth for binary analysis. In Work-
shop on Binary Analysis Research (BAR), 2022.

[5] Dennis Andriesse, Xi Chen, Victor Van Der Veen, Asia
Slowinska, and Herbert Bos. An in-depth analysis of
disassembly on full-scale x86/x64 binaries. In 25th
{USENIX} Security Symposium ({USENIX} Security
16), pages 583-600, 2016.

[6] Dennis Andriesse, Asia Slowinska, and Herbert Bos.
Compiler-agnostic function detection in binaries. In
2017 IEEE European Symposium on Security and Pri-
vacy (EuroS&P), pages 177-189. IEEE, 2017.

[71 ARM. Arm architecture reference manual armv7-
a. https://developer.arm.com/documentation/
ddi0406/latest, 2021.

[8] ARM. Arm mapping symbols. https://developer.
arm.com/documentation/dui0803/a/Accessing—
and-managing-symbols-with-armlink/About-
mapping-symbols, 2021.

[9] Computer Security Lab at UC Santa Barbara. angr
github repo. https://github.com/angr/angr/
tree/76dad34f, 2020.

[10] Tiffany Bao, Jonathan Burket, Maverick Woo, Rafael
Turner, and David Brumley. {BYTEWEIGHT}: Learn-
ing to recognize functions in binary code. In 23rd
{USENIX} Security Symposium ({USENIX} Security
14), pages 845-860, 2014.

[11] Mahinthan Chandramohan, Yinxing Xue, Zhengzi Xu,
Yang Liu, Chia Yuan Cho, and Hee Beng Kuan Tan.

2492 31st USENIX Security Symposium

USENIX Association

https://training.mips.com/basic_mips/PDF/Assemble_Language.pdf
https://training.mips.com/basic_mips/PDF/Assemble_Language.pdf
https://gcc.gnu.org/onlinedocs/gccint/RTL-passes.html
https://gcc.gnu.org/onlinedocs/gccint/RTL-passes.html
https://www.nsa.gov/resources/everyone/ghidra/
https://www.nsa.gov/resources/everyone/ghidra/
https://developer.arm.com/documentation/ddi0406/latest
https://developer.arm.com/documentation/ddi0406/latest
https://developer.arm.com/documentation/dui0803/a/Accessing-and-managing-symbols-with-armlink/About-mapping-symbols
https://developer.arm.com/documentation/dui0803/a/Accessing-and-managing-symbols-with-armlink/About-mapping-symbols
https://developer.arm.com/documentation/dui0803/a/Accessing-and-managing-symbols-with-armlink/About-mapping-symbols
https://developer.arm.com/documentation/dui0803/a/Accessing-and-managing-symbols-with-armlink/About-mapping-symbols
https://github.com/angr/angr/tree/76da434f
https://github.com/angr/angr/tree/76da434f

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Bingo: Cross-architecture cross-os binary search. In
Proceedings of the 2016 24th ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineer-
ing, pages 678—689, 2016.

Lucas Davi, Christopher Liebchen, Ahmad-Reza
Sadeghi, Kevin Z Snow, and Fabian Monrose. Iso-
meron: Code randomization resilient to (just-in-time)
return-oriented programming. In NDSS, 2015.

Chris Eagle. The IDA pro book. No Starch Press, 2011.

GNU. Objdump 2.30. https://ftp.gnu.org/gnu/
binutils/binutils-2.30.tar.xz, 2020.

Jason Hiser, Anh Nguyen-Tuong, Michele Co, Matthew
Hall, and Jack W Davidson. Ilr: Where’d my gadgets
go? In 2012 IEEE Symposium on Security and Privacy,
pages 571-585. IEEE, 2012.

Yikun Hu, Yuanyuan Zhang, Juanru Li, and Dawu Gu.
Binary code clone detection across architectures and
compiling configurations. In 2017 IEEE/ACM 25th
International Conference on Program Comprehension
(ICPC), pages 88-98. IEEE, 2017.

Muhui Jiang, Yajin Zhou, Xiapu Luo, Ruoyu Wang,
Yang Liu, and Kui Ren. An empirical study on arm
disassembly tools. In Proceedings of the 29th ACM
SIGSOFT International Symposium on Software Testing
and Analysis, pages 401-414, 2020.

Johannes Kinder and Dmitry Kravchenko. Alternating
control flow reconstruction. In International Workshop
on Verification, Model Checking, and Abstract Interpre-
tation, pages 267-282. Springer, 2012.

Hyungjoon Koo, Yaohui Chen, Long Lu, Vasileios P Ke-
merlis, and Michalis Polychronakis. Compiler-assisted
code randomization. In 2018 IEEE Symposium on Secu-
rity and Privacy (SP), pages 461-477. IEEE, 2018.

Aditya Kumar. Hot cold splitting in llvm. https:
//1lvm.org/devmtg/2019-10/slides/Kumar-
HotColdSplitting.pdf, 2019.

Kaiyuan Li, Maverick Woo, and Limin Jia. On the gen-
eration of disassembly ground truth and the evaluation
of disassemblers. In Proceedings of the 2020 ACM
Workshop on Forming an Ecosystem Around Software
Transformation, pages 9-14, 2020.

Xiaozhu Meng and Barton P Miller. Binary code is not
easy. In Proceedings of the 25th International Sympo-
sium on Software Testing and Analysis, pages 24-35,
2016.

(23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

Stefan Nagy, Anh Nguyen-Tuong, Jason D Hiser, Jack W
Davidson, and Matthew Hicks. Breaking through bina-
ries: Compiler-quality instrumentation for better binary-
only fuzzing. In 30th {USENIX} Security Symposium
({USENIX} Security 21),2021.

NationalSecurityAgency. Ghidra 9.04. https://
htmlpreview.github.io/?https://github.com/
NationalSecurityAgency/ghidra/blob/Ghidra_
9.0.4_build/Ghidra/Configurations/Public_
Release/src/global/docs/ChangeHistory.html,
2020.

Binary Ninja. binary.ninja : a reverse engineering plat-
form. https://binary.ninja/, 2021.

Chengbin Pang, Ruotong Yu, Yaohui Chen, Eric Koski-
nen, Georgios Portokalidis, Bing Mao, and Jun Xu. Sok:
All you ever wanted to know about x86/x64 binary dis-
assembly but were afraid to ask. In 2021 IEEE Sym-
posium on Security and Privacy (SP), pages 833—-851.
IEEE, 2021.

Chengbin Pang, Ruotong Yu, Dongpeng Xu, Eric Kosk-
inen, Georgios Portokalidis, and Jun Xu. Towards opti-
mal use of exception handling information for function
detection. In 2021 51st Annual IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks
(DSN), pages 338-349. IEEE, 2021.

Kexin Pei, Jonas Guan, David Williams-King, Jun-
feng Yang, and Suman Jana. Xda: Accurate, robust
disassembly with transfer learning. arXiv preprint
arXiv:2010.00770, 2020.

Rui Qiao and R Sekar. Function interface analysis: A
principled approach for function recognition in cots bina-
ries. In 2017 47th Annual IEEE/IFIP International Con-
ference on Dependable Systems and Networks (DSN),
pages 201-212. IEEE, 2017.

radreorg. Radare2 github repo. https://github.com/
radareorg/radare2/tree/5ald£188, 2020.

Pawel Sarbinowski, Vasileios P Kemerlis, Cristiano
Giuffrida, and Elias Athanasopoulos. Vtpin: practical
vtable hijacking protection for binaries. In Proceedings
of the 32nd Annual Conference on Computer Security
Applications, pages 448-459, 2016.

Eui Chul Richard Shin, Dawn Song, and Reza Moazzezi.
Recognizing functions in binaries with neural networks.
In 24th {USENIX} Security Symposium ({USENIX}
Security 15), pages 611-626, 2015.

Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls,
Nick Stephens, Mario Polino, Andrew Dutcher, John
Grosen, Siji Feng, Christophe Hauser, Christopher

USENIX Association

31st USENIX Security Symposium 2493

https://ftp.gnu.org/gnu/binutils/binutils-2.30.tar.xz
https://ftp.gnu.org/gnu/binutils/binutils-2.30.tar.xz
https://llvm.org/devmtg/2019-10/slides/Kumar-HotColdSplitting.pdf
https://llvm.org/devmtg/2019-10/slides/Kumar-HotColdSplitting.pdf
https://llvm.org/devmtg/2019-10/slides/Kumar-HotColdSplitting.pdf
https://htmlpreview.github.io/?https://github.com/NationalSecurityAgency/ghidra/blob/Ghidra_9.0.4_build/Ghidra/Configurations/Public_Release/src/global/docs/ChangeHistory.html
https://htmlpreview.github.io/?https://github.com/NationalSecurityAgency/ghidra/blob/Ghidra_9.0.4_build/Ghidra/Configurations/Public_Release/src/global/docs/ChangeHistory.html
https://htmlpreview.github.io/?https://github.com/NationalSecurityAgency/ghidra/blob/Ghidra_9.0.4_build/Ghidra/Configurations/Public_Release/src/global/docs/ChangeHistory.html
https://htmlpreview.github.io/?https://github.com/NationalSecurityAgency/ghidra/blob/Ghidra_9.0.4_build/Ghidra/Configurations/Public_Release/src/global/docs/ChangeHistory.html
https://htmlpreview.github.io/?https://github.com/NationalSecurityAgency/ghidra/blob/Ghidra_9.0.4_build/Ghidra/Configurations/Public_Release/src/global/docs/ChangeHistory.html
https://binary.ninja/
https://github.com/radareorg/radare2/tree/5a1df188
https://github.com/radareorg/radare2/tree/5a1df188

Kruegel, et al. Sok:(state of) the art of war: Offensive
techniques in binary analysis. In 2016 IEEE Symposium
on Security and Privacy (SP), pages 138—157. IEEE,
2016.

[34] David Williams-King, Hidenori Kobayashi, Kent
Williams-King, Graham Patterson, Frank Spano,
Yu Jian Wu, Junfeng Yang, and Vasileios P Kemerlis.
Egalito: Layout-agnostic binary recompilation. In Pro-
ceedings of the Twenty-Fifth International Conference
on Architectural Support for Programming Languages
and Operating Systems, pages 133-147, 2020.

[35] Sheng Yu, Yu Qu, Xunchao Hu, and Heng Yin. Deepdi:
Learning a relational graph convolutional network
model on instructions for fast and accurate disassem-
bly.

[36] Zeping Yu, Rui Cao, Qiyi Tang, Sen Nie, Junzhou
Huang, and Shi Wu. Order matters: Semantic-aware
neural networks for binary code similarity detection. In
Proceedings of the AAAI Conference on Artificial Intel-
ligence, volume 34, pages 1145-1152, 2020.

[37] Mingwei Zhang and R Sekar. Control flow integrity for
{COTS} binaries. In 22nd {USENIX} Security Sympo-
sium ({USENIX} Security 13), pages 337-352, 2013.

A ORACLEGT v.s. Compilation Metadata

In this section, we present a comparison between ORACLEGT
and the approach present in [5] (which leverages debug in-
formation to extract ground truth for binary disassembly).
Specifically, we run ORACLEGT and [5] in their conservative
mode to collect the ground truth of instructions in the x86/x64
benchmarks presented in [26], and we compare the results
of both approaches. As ORACLEGT is ensured to be correct,
we consider every instruction identified by ORACLEGT but
missed by [5] as a false negative (FN) of [5]. We further
manually examined the instructions detected by [S5] but not
covered by ORACLEGT. We confirmed all of them are false
positives (FPs) of [5]. As we can see in Table 6, [5] can incur
tremendous FNs and a meaningful group of FPs, presenting a
lower utility than ORACLEGT. As shown in Listing 6, debug
information only carries the locations of some instructions
but not of them and [5] only runs conservative disassembly
between two continuous locations, which leads to the plenty
of false negatives. Further, as illustrated in Listing 7, the de-
bug information can be inaccurate and thus, also leads to false
positives of [5].

Algorithm 1: FIND INDIRECT JUMPS.

Input : A list of cross reference to identified jump table:
JTR = {jtry,jtra, ..., jtra}

Input : Control flow graph of functions: CFG

Output : A list of mappings between cross references to jump

table and indirect jumps:
M= {(jtrl7ij1)=(jtrzvijz)“'v(jtrﬂvij")}

/* ij;i represents ith founded indirect jump. */
1 Procedure taint_instruction(I):

2 tainted = false

3 for each register R, used for reading in I do
4 if R,.is_tainted() then

5 tainted = true

6 end

7 end

8 for each register R, used for writing in I do
9 if tainted then

10 | Ry-taint()

11 else

12 | Ry.clear_taint()

13 end

14 end
15 return

16 Initialization: M = 0; fixpoint = false
17 while = fixpoint do

/% Loop until CFG could not not updated. */

18 fixpoint = true

19 for each jtriinJ TR do

20 Q =0

21 I =CFG.get_instr(jtr;) /* get the instruction

contains jir; */

22 L.taint_initialize()

23 O.push(I)

24 while Q is_not_empty() do

25 I= Q.pop()

26 taint_instruction(I)

27 if .is_tainted() and 1.is_indirect_jump() then

28 fixpoint = false

29 M.add((jtr;,instruction))

30 CfG.update(I, jtri) /* update CFG
according to the jump table
information */

31 J T'R.remove(Jjtri)

32 break

33 end

34 Q.append(CF G.get_successors([))

3 end

36 end

37 end

38 return M;

Table 6: The number of FPs and FNs incurred by [5].

OPT | O0 | O1 | O2 | O3 | Os | Of
#of FPs | 301 | 361 | 501 | 690 | 361 | 908
#0f FNs | 2,764K | 898K | 444K | 471K | 497K | 466K

2494 31st USENIX Security Symposium

USENIX Association

Table 7: Evaluation results of instruction recovery, function start detection, and jump table reconstruction by mainstream
disassemblers on ARM32/A Arch64/MIPS binaries. In the colloumns, O indicates the optimization level; T means ARM32
Thumb mode; Pre and Rec represent precision and recall. We merge the results of MIPS32 and MIPS64 as their instruction
encoding is similar. The best/worst results specific to each optimization level are respectively marked in blue/red color.

Arch o Objdump Ghidra Angr Radare2 IDA Ninja
Pre Rec Pre Rec Pre Rec Pre Rec Pre Rec Pre Rec
02 | 9377 9999 | 9995 97.57 | 99.04 99.53 9279 41.24 | 99.99 97.97 99.99 99.03
32 03 9442 99.99 | 99.96 97.79 | 98.93 9946 | 91.41 40.72 | 99.99 98.09 | 99.99 98.85
Os 9595 99.99 | 9997 9754 | 97.19 9842 | 9193 42.80 | 99.99 98.89 | 99.98 98.50
Of | 9447 99.99 | 9994 97.69 | 99.01 99.47 | 92.26 39.32 | 99.99 98.05 99.99 98.87
02 | 7225 57.56 | 9993 93.31 98.82 99.03 98.34 46.29 | 9990 97.29 | 99.65 86.57
" E T 03 73.10 5727 | 99.94 89.24 | 98.78 99.02 | 9891 45.07 99.90 97.33 99.64 83.56
g < Os 7526 57.39 | 9991 9293 | 96.80 9894 | 99.24 48.45 99.89 97.77 | 99.70 90.13
'*3 Oof | 73.14 57.28 99.94 89.16 | 98.78 99.02 | 98.79 46.47 9990 97.32 | 99.67 83.59
g 02 100.0 100.0 100.0 94.21 100.0 99.99 100.0 79.07 100.0 97.48 100.0 98.29
E 64 03 100.0 100.0 100.0 93.70 100.0 100.0 100.0 83.47 100.0 97.72 100.0 98.20
Os 100.0 100.0 100.0 94.30 100.0 100.0 100.0 84.02 100.0 97.68 100.0 97.94
Of 100.0 100.0 100.0 94.10 100.0 100.0 100.0 79.64 100.0 97.54 100.0 97.94
32 02 100.0 100.0 100.0 77.88 100.0 99.85 100.0 57.15 100.0 99.10 | 99.99 68.04
g & 03 100.0 100.0 100.0 74.11 100.0 99.85 100.0 54.46 100.0 9936 | 99.99 69.24
= 64 Os 100.0 100.0 100.0 83.52 100.0 99.86 100.0 67.16 100.0 99.06 | 99.99 71.20
of 100.0 100.0 100.0 74.44 100.0 99.85 100.0 54.58 100.0 99.37 | 99.99 67.85
02 - - 95.12 6842 | 71.39 8550 | 69.43 32.83 93.60 56.75 96.31 88.98
3 03 - - 9493 7097 68.14 83.75 69.28 32.67 93.29 54.75 96.24 88.91
Os - - 96.12 6940 | 6343 8390 | 7249 34.11 93.48 60.52 | 9643 87.96
Of - - 95.04 70.91 68.27 8330 | 71.94 32.69 | 93.34 5451 96.29 88.76
02 - - 9542 67.25 | 42.63 62.64 | 79.77 30.71 83.67 55.60 | 84.07 62.13
= T 03 - - 9539 66.55 39.47 6147 | 79.60 29.83 83.55 5348 | 79.87 6045
2 E‘ﬁ Os - - 95.05 65.00 | 42.17 70.33 81.01 32.51 84.22 59.15 87.64 66.19
é of - - 95.47 66.54 | 3949 61.22 | 79.91 30.35 83.68 53.26 80.49 60.74
g 02 - - 89.55 80.75 78.14 89.23 87.97 6794 | 9935 56.61 99.08 94.73
m:x 64 03 - - 88.75 80.88 | 7592 87.83 86.36 68.88 | 98.73 54.33 98.81 93.58
Os - - 97.74 81.96 | 89.08 97.83 87.14 69.16 | 95.02 5749 | 97.82 92.64
of - - 88.91 81.17 75.61 88.02 | 86.40 69.41 99.36 5551 98.81 93.73
32 02 - - 98.60 62.33 56.42 8332 | 96.05 51.99 | 99.81 71.27 64.27 75.26
g & 03 - - 98.22 58.76 | 54.72 81.13 96.06 49.35 99.81 71.28 63.20 73.82
= 64 Os - - 98.81 69.99 | 6576 89.00 | 99.58 58.17 | 99.86 76.25 65.89 78.24
Oof - - 98.21 59.25 53.83 81.23 96.10 4945 99.82 71.62 | 6291 73.36
02 - - 93.87 93.77 2212 95.85 10.27 10.48 99.29 95.19 | 98.65 97.97
32 03 - - 87.04 86.62 | 21.14 9447 11.17 11.75 98.99 81.54 | 98.58 97.14
Os - - 93.27 93.30 14.31 96.02 6.33 5.94 99.59 95.68 98.47 98.24
of - - 86.85 86.43 21.31 95.14 9.82 10.49 | 99.04 81.67 98.67 97.25
02 - - 98.57 97.54 15.41 83.42 | 50.16 46.83 99.63 99.50 | 99.19 98.62
- = T 03 - - 98.59 91.52 14.69 8258 | 59.95 5577 | 99.73 99.60 | 98.21 97.45
ﬁ E‘t Os - - 97.63 97.29 9.51 81.11 47.63 46.57 99.91 99.75 98.98 98.84
ﬁ of - - 98.50 91.14 14.62 8244 | 59.86 56.34 | 99.73 99.60 | 98.21 97.45
=) 02 - - 99.32 86.62 1447 41.06 11.11 0.01 96.16 98.17 98.63 95.74
E 64 03 - - 99.23 95.03 1528 41.34 0.00 0.00 94.88 96.01 98.55 98.11
Os - - 99.45 98.36 15.05 41.97 0.00 0.00 93.12 94.05 83.49 8341
Of - - 99.17 85.31 14.41 40.96 0.00 0.00 95.55 96.71 97.65 95.69
32 02 - - 97.74 4190 6.94 19.06 14.28 0.01 82.09 51.38 9459 57.32
§~ & 03 - - 9730 36.64 7.27 16.19 14.28 0.01 81.59 51.81 91.14 55.73
> 64 Os - - 97.58 49.04 5.31 19.97 16.66 0.01 80.32 5292 | 9245 58.51
of - - 97.31 37.51 7.82 16.45 0.00 0.00 81.58 51.82 87.90 54.70

USENIX Association 31st USENIX Security Symposium 2495

	Introduction
	Taxonomy of Ground Truth Approaches
	Properties of Ground Truth Approaches
	Implications of Imperfect Ground Truth
	Discussion: What Do We Need Today?
	Towards Better Ground Truth
	Background
	Improvements
	Extending
	Application

	Related works
	Conclusion
	OracleGT v.s. Compilation Metadata

